Quasi-invariance and analyticity of measures on compact groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disintegration of Measures on Compact Transformation Groups

To prove 1.1, one first assumes X is compact and G is a Lie group. In this case, X is "measure-theoretically" the product Y x G; this follows from the existence of local cross-sections to the projection n [6]. Let n2 : X ~ Y x G —> G, and define a map £ from L(Y, v) to the space of Radon measures on G as follows: £(ƒ) = TÏ2 [if ° n) ' M] • Apply the Dunford-Pettis Theorem [3] to ? to obtain a m...

متن کامل

Quasi-invariance for Heat Kernel Measures on Sub-riemannian Infinite-dimensional Heisenberg Groups

We study heat kernel measures on sub-Riemannian infinitedimensional Heisenberg-like Lie groups. In particular, we show that Cameron-Martin type quasi-invariance results hold in this subelliptic setting and give L-estimates for the Radon-Nikodym derivatives. The main ingredient in our proof is a generalized curvature-dimension estimate which holds on approximating finite-dimensional projection g...

متن کامل

Conditional Haar Measures on Classical Compact Groups

We give a probabilistic proof of the Weyl integration formula on U(n), the unitary group with dimension n. This relies on a suitable definition of Haar measures conditioned to the existence of a stable subspace with any given dimension p. The developed method leads to the following result: for this conditional measure, writing Z (p) U for the first nonzero derivative of the characteristic polyn...

متن کامل

Hua-pickrell Measures on General Compact Groups

Take a generic subgroup G, endowed with its Haar measure, from U(n,K), the unitary group of dimension n over the field K of real, complex or quaternion numbers. We give some equalities in law for Z := det(Id − G), G ∈ G : under some general conditions, Z can be decomposed as a product of independent random variables, whose laws are explicitly known (Section 2). Consequently G, endowed with a ge...

متن کامل

A Quasi-invariance Theorem for Measures on Banach Spaces

We show that for a measure -y on a Banach space directional different ¡ability implies quasi-translation invariance. This result is shown to imply the Cameron-Martin theorem. A second application is given in which 7 is the image of a Gaussian measure under a suitably regular map.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 1963

ISSN: 0001-5962

DOI: 10.1007/bf02391812